

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: WELDING AND METALWORK

2021

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 18 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	B✓	(1)
1.2	A✓	(1)
1.3	C ✓	(1)
1.4	C ✓	(1)
1.5	D✓	(1)
1.6	A✓	(1) [6]

(3)

(2)

(1)

(2)

[10]

QUESTION 2: SAFETY (GENERIC)

2.1 **First aid basic treatment:**

- Examination ✓
- Diagnosis ✓
- Treatment ✓

2.2 Drill press (Already been switched on):

- Never leave the drill unattended while in motion. \checkmark
- Switch off the drill when leaving. \checkmark
- Use a brush or wooden rod to remove chips. ✓
- When reaching around a revolving drill, be careful that your clothes do not get caught in the drill or drill chuck. ✓
- Don't stop a revolving chuck with your hand. \checkmark
- Don't adjust the drill while working. ✓
- Don't open any guard while in motion. ✓
- Keep hands away from action points. ✓
- Do not force the drill bit into the material. \checkmark
- Apply cutting fluid if required. ✓

2.3 **Isolation of electrode holder:**

To prevent electric shock. ✓

2.4 **Disadvantages of the process layout:**

- Production is not always continuous. ✓
- Transportation costs between process departments may be high. ✓
- Additional time is spent in testing and sorting as the product moves to the different departments. ✓
- Damage to fragile goods may result from extra handling. ✓
- (Any 2 x 1) (2)

(Any 2 x 1)

2.5 Advantages of the product layout:

- Handling of material is limited to a minimum. ✓
- Time period of manufacturing cycle is less. ✓
- Production control is almost automatic. ✓
- Control over operations is easier. \checkmark
- Greater use of unskilled labour is possible. ✓
- Less total inspection is required. \checkmark
- Less total floor space is needed per unit of production. ✓
- Reduction in manufacturing costs. \checkmark

(Any 2 x 1)

(Any 3 x 1)

(Any 1 x 1)

(3)

(3)

(1)

(3)

QUESTION 3: MATERIALS (GENERIC)

3.1 Heat-treatment:

- Heat the metal slowly to a certain temperature. ✓
- Soak the metal for a certain period to ensure a uniform temperature. ✓
- Cool the metal at a certain rate to room temperature. ✓

3.2 **Quenching mediums:**

- Water ✓
- Brine ✓
- Liquid salts ✓
- Oil ✓
- Soluble oil and water \checkmark
- Sand ✓
- Molten lead ✓
- Air √
- Lime ✓

3.3 Annealing:

- To relieve internal stresses of the steel ✓
- Soften steel to make machining possible ✓
- Make steel ductile ✓
- Refine grain structure ✓
- Reduce brittleness ✓

3.4 **Carbon steels:**

- Low carbon steel ✓
- Medium carbon steel ✓
- High carbon steel ✓

3.5 **Iron-carbon equilibrium diagram:**

- A Percentage carbon / carbon content ✓
- B Temperature in °C ✓
- C AC3 line / Higher critical temperature ✓
- D AC1 line / Lower critical temperature ✓

(4) **[14]**

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	D✓	(1)
4.2	B✓	(1)
4.3	A✓	(1)
4.4	B✓	(1)
4.5	D✓	(1)
4.6	B✓	(1)
4.7	D✓	(1)
4.8	C✓	(1)
4.9	A or B ✓	(1)
4.10	C √	(1)
4.11	A or B ✓	(1)
4.12	B✓	(1)
4.13	A✓	(1)
4.14	C✓	(1) [14]

6 SC/NSC - Marking Guidelines

- A. Tail ✓
- B. Weld symbol / Fillet weld on the other side / Weld symbol on the other side / Fillet weld ✓
- C. Pitch of weld \checkmark

Mechanical Technology: Welding and Metalwork

- D. Site weld \checkmark
- E. Arrow ✓
- F. Weld all round ✓

5.6

 $\int_{\mathcal{F}} \frac{1}{\sqrt{2}} dx$

(6)

DBE/2021

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

6.1 **Plasma cutter:**

- Creating an electrical channel of ionised gas (plasma), ✓ from the plasma cutter itself through the work piece that is being cut.
- It forms a completed electric circuit \checkmark via a grounding clamp.
- Compressed air is blown toward the work piece through a focused nozzle at high speed. ✓
- A high frequency, electrical arc is then formed within the gas between an electrode near or integrated into the gas nozzle and the work piece itself. ✓

6.2 Hydraulic press:

- For removing bearings or bushes. ✓
- Fitting of bearings or bushes. ✓
- To shape material. ✓
- Testing of welded joints ✓

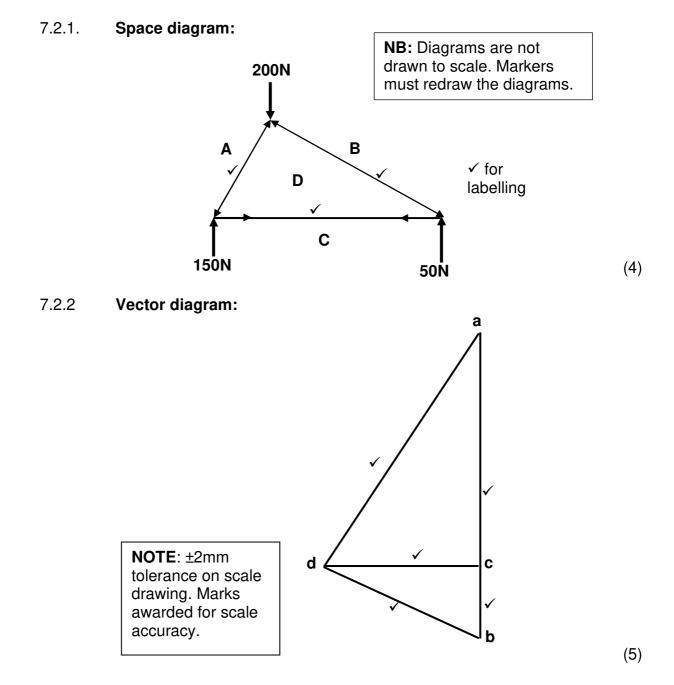
(Any 2 x 1) (2)

(4)

6.3	DrilUse	I thread cutting process: I the required core diameter. ✓ e the three taps in order – taper / intermediate / plug. ✓ eck thread with thread pitch gauge/bolt when complete. ✓	(3)
6.4	Power s To cut s	saw: ections of metal / material. ✓	(1)
6.5	Gas welding:		
	6.5.1	Oxygen regulator / Acetylene regulator / regulator \checkmark	(1)
	6.5.2	 A. Gauge ✓ B. Outlet ✓ C. Inlet ✓ D. Pressure adjusting knob ✓ 	(4)
6.6	-	ne gas cylinder: aroon ✓	(1)
6.7		ack arrestor: ent ✓ back feeding / flashback of flame ✓	(2)

[18]

QUESTION 7: FORCES (SPECIFIC)


7.1 **Define:**

7.1.1 **Stress:**

The internal resistance \checkmark in a body to an external force or load. \checkmark (2)

7.1.2 Hooke's law: Strain is directly proportional to the stress it causes; ✓ provided the limit of elasticity is not exceeded. ✓ (2)

7.2 Frameworks:

(6)

7.2.3 Magnitude and nature of members:

MEMBER	MAGNITUDE	NATURE
AD	172 N – 176 N ✓	Strut ✓
BD	100 N – 104 N ✓	Strut ✓
CD	87 N – 91 N ✓	Tie ✓

7.3 Beam:

7.3.1 Calculate RL:

Taking moment about right reaction (RR)

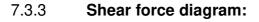
RL×10 = (25×2) + (30×6,5) + (15×8) ✓
= 50 + 195 + 120
=
$$\frac{365}{10}$$
 ✓
RL = 36,5 N ✓

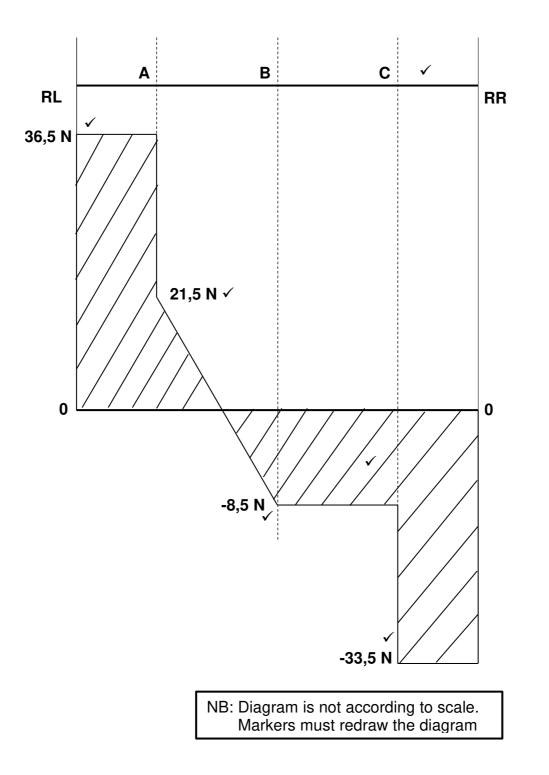
Calculate RR:

Taking moment about left reaction (RL)

$$RR \times 10 = (15 \times 2) + (30 \times 3,5) + (25 \times 8) \checkmark$$

$$= 30 + 105 + 200 \qquad (6)$$


$$= \frac{335}{10} \checkmark$$


$$RR = 33,5 N \checkmark$$

7.3.2 Shear forces at point A, B and C:

$$SF_{A} = 36,5 - 15 \checkmark$$

= 21,5 N \scalering
SF_{B} = 36,5 - 15 - 30 \scalering
= -8,5 N \scalering
SF_{C} = 36,5 - 15 - 30 - 25 \scalering
= -33,5 N \scalering

(6)

(6)

7.4 **Stress and strain:**

7.4.1 **Stress:**

Stress =
$$\frac{\text{Load}}{\text{Area}}$$
 But Area = $\frac{\pi D^2}{4}$
Area = $\frac{\pi D^2}{4}$
= $\frac{\pi (0,03)^2}{4} \checkmark$
= 0,71×10⁻³ m² or 7,07×10⁻⁴ m² \checkmark

Stress =
$$\frac{\text{Force}}{\text{Area}}$$

= $\frac{80 \times 10^3 \text{ N}}{0,71 \times 10^{-3} \text{ m}^2} \checkmark$
= 112,68 × 10⁶ Pa ✓
= 112,68 MPa ✓

OR

Stress =
$$\frac{\text{Force}}{\text{Area}}$$

= $\frac{80 \times 10^3 \text{ N}}{7,07 \times 10^{-4} \text{ m}^2} \checkmark$
= 113154172,6 Pa \checkmark
= 113,15 MPa \checkmark

7.4.2 **Strain:**

Strain =
$$\frac{\Delta L}{OL}$$

= $\frac{0.06}{3000}$ \checkmark
= 0.02×10^{-3} \checkmark

(If any unit indicated, then NO mark awarded for final answer)

(2) **[45]**

(6)

QUESTION 8: JOINING METHODS (INSPECTION OF WELDS) (SPECIFIC)

8.1 Welding defects (Causes):

8.1.1 Slag inclusion:

- Included angle too narrow. ✓
- Rapid chilling. ✓
- Welding temperature to low / current too low. ✓
- High viscosity of molten metal.✓
- Slag not removed from previous weld run. ✓
- Incorrect welding technique. ✓
- Surface contamination.
- Too big weaving action. ✓
- Too slow speed along the weld joint. ✓
- Too short arc length. ✓

(Any 2 x 1) (2)

8.1.2 **Incomplete penetration:**

- Speed too fast. ✓
- Poor welding technique. ✓
- Electrode too large. ✓
- Current too low. ✓
- Joint preparation not prepared correctly. ✓
- Weldability of parent metal not good. ✓

(Any 2 x 1) (2)

8.2 Welding defects (Prevention):

8.2.1 **Porosity:**

- Use correct current. ✓
- Hold a longer arc. ✓
- Use correct electrodes. ✓
- Check for impurities. ✓
- Ensure adequate shielding gas. ✓
- Correct welding technique. ✓
- Check that electrode/ filler metal did not rust.✓

(Any 2 x 1) (2)

8.2.2 **Lack of fusion:**

- Use correct included angle. ✓
- Use the correct size of electrode. ✓
- Use the correct current setting. ✓
- Prepare the plate bevel/V-groove accordingly. ✓

(Any 2 x 1) (2)

8.3 **Destructive and non-destructive tests:**

8.3.1 Free-bend:

- Used to determine the percentage of elongation of the welded metal. ✓
- To determine the ductility of the weld metal and heat affected area. ✓

(Any 1 x 1) (1)

(Any 1 x 1)

8.3.2 X-ray test:

- To determine whether there has been full depth penetration. ✓
- Determine if correct fusion between welded pieces took place. ✓
- To detect internal defects like pin holes, slag inclusions, cracks etc. ✓

8.4 Welding cracks:

- Heat affected zone (HAZ) cracks. ✓
- Centre line / longitude cracks. ✓
- Crater cracks. ✓
- Transverse cracks. ✓

8.5 **Oxy-acetylene welding process:**

- Correct flame for the work on hand. ✓
- Correct angle of nozzle. ✓
- Correct angle of rod. ✓
- Depth of fusion. ✓
- The amount of penetration. ✓
- The rate of progress along the joint. \checkmark

(Any 2 x 1) (2)

8.6 Nick-break test:

- Each side of the weld is slotted by means of a saw. ✓
- Place the specimen on two steel supports / In a bench vice.
- Break the specimen \checkmark by striking it with a hammer. \checkmark
- Inspect the weld metal for exposed defects. ✓

8.7 Non-destructive tests:

- It does not involve the destruction/damage of the test piece ✓
- The test piece can still be used after test is done. ✓

(Any 1 x 1) (1)

8.8 **Machinability test:**

- To determine the ease of machining ✓
- To determine the quality of the finish \checkmark

(1)

(Any 3 x 1) (3)

(5)

(2)

[23]

DBE/2021

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

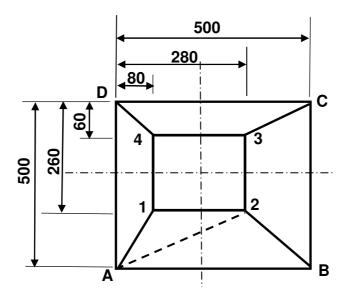
9.1	MeltiIts coThe a	The amount of cold work ✓	
9.2	Shrinkage in a welded joint:		
	9.2.1	Electrode type: Thermal properties have a greater potential to cause deformation.	(1)
	9.2.2	Electrode size: The larger the electrode diameter the higher the current the greater the deformation. \checkmark	(1)
	9.2.3	Welding current: The higher the welding temperature the higher the deformation. \checkmark	(1)
9.3	SizeWeldThen	that determine the cooling rate: of work piece ✓ I thickness ✓ mal conductive properties of parent metal ✓ (Any 2 x 1)	(2)
9.4	Definition:		
	9.4.1	Distortion: Weld distortion is the warping of the base metal \checkmark caused by heat from the welding arc/flame. \checkmark	(2)
	9.4.2	Shrinkage: Weld shrinkage is a form of plastic deformation \checkmark where the metal has deformed as a result of contraction on cooling. \checkmark	(2)
9.5		affecting distortion and residual stress: n the metal is <u>heated and expansion is resisted</u> then deformation will r. \checkmark	
	 When <u>cooling occurs and contraction is resisted</u>, then stress will occur. ✓ If applied stress causes movement, the distortion occurs. ✓ If applied stress does not cause movement then there will be residual stress in the welded isint. 		
	Sues	s in the welded joint. ✓ (Any 3 x 1)	(3)

9.6 **Causes of residual stress:**

- During welding, the welds and Heat Affected Zone (HAZ) are heated to • temperatures well above those of the surrounding material. \checkmark
- The weld and HAZ deform plastically because their thermal expansion is • restricted by the surrounding material. \checkmark
- As the weld cools and contracts, tensile stresses develop elastically. \checkmark •
- Welds develop tensile stresses that approach yield stress. \checkmark •

(Any 2 x 1)

(2) [18]

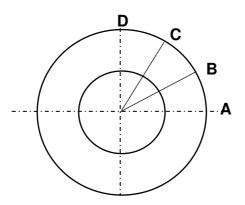

QUESTION 10: MAINTENANCE (SPECIFIC)

10.1	Overloading:			
	10.1.1	 Shearing machines: Dulling or breaking blades. ✓ Putting strain on the motor and drive mechanism. ✓ 	Any 1 x 1)	(1)
	10.1.2	 Drill press: Damage / breakage to the drill bit. ✓ It puts strain on the drive components. ✓ 	Any 1 x 1)	(1)
10.2	Friction:			
	10.2.1	Guillotine: Excessive wear / damage to moving parts. ✓		(1)
	10.2.2	 Horizontal band saw: Overheating of the cutting blade. ✓ Damage to the cutting blade. ✓ Excessive wear to moving parts. ✓ 	Any 1 x 1)	(1)
10.3	 Chec Chec Chec Chec Chec Chec Chec 	ance of a power saw: k the mains electrical switches. \checkmark k the wiring and conduits for cracks. \checkmark k for broken control mechanisms. \checkmark k electrical connections. \checkmark k for loose electrical components. \checkmark k that cutting fluid does not come in contact with electrical hes. \checkmark	wiring and Any 2 x 1)	(2)
10.4	 Apply Apply Preve Ensu Ensu 	to reduce friction: ving cutting fluid. \checkmark ving oil. \checkmark ent excessive pressure / Apply adequate pressure. \checkmark re that the drill bit is sharp. \checkmark re to use correct speed for the size of drill bit. \checkmark the correct drill bit. \checkmark		
			Any 2 x 1)	(2)

(2) [8]

QUESTION 11: TERMINOLOGY (DEVELOPMENT) (SPECIFIC)

11.1 Square to square off centre hopper:


11.1.1 True length of A-2:

True length
$$(A-2) = \sqrt{240^2 + 280^2 + 400^2}$$

= $\sqrt{57600 + 78400 + 160000}$
= $\sqrt{296000}$
= 544,06 mm $\checkmark \approx 544$ mm \checkmark (5)

11.1.2 **True length of C-3:**

True length
$$(C-3) = \sqrt{220^2 + 60^2 + 400^2}$$

= $\sqrt{48400 + 3600 + 160000}$
= $\sqrt{212000}$
= 460,43 mm $\checkmark \approx 460$ mm \checkmark (5)

11.2 Truncated cone:

- 11.2.1 True length of A-B: True length $(A - B) = \frac{\pi D}{12} \checkmark$ $= \frac{\pi \times 600}{12} \checkmark$ $= \frac{1884,96}{12} \checkmark$ $= 157,08 \text{ mm } \checkmark \approx 157 \text{ mm } \checkmark$ (5)
- 11.2.2 **Circumference of the top circle:** Circumference of top circle = $\pi \times D$ \checkmark = $\pi \times 400$ \checkmark = 1256,64 mm $\checkmark \approx 1257$ mm \checkmark (4) 11.2.3 600 \checkmark mm. \checkmark (2) [21]

TOTAL: 200